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Tutorial Outline

Part 1: Introduction to Fairness in Finance (Zhimeng and Chia-Yuan)
— Background
— Fairness Definitions

— Methods

* Pre-/In-/Post-processing overview
» Showcase of DATA lab research

— Challenges, Insights, and Tools
Part 2 : A Hands-On Example of Fairness in Finance (Xiaotian)
— Fairness Issue in Finance Dataset

— Goal for Financial Fairness: Fairness Metrics
— Hands-on Notebook
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Machine Learning are Everywhere in Finance

« Process automation --> Reduced operational cost
Better productivity --> Increased revenues
 Advanced ML --> Better compliance

Financial Aid E—commerce

Perecentage of large companies that identified Al as the most relevant to invest
in within the next 12 months

Large Financial 30%
Institutions

Image source from towards data science:
Machine learning in finance: Why, what & how
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Fairness in Finance

* Foundation laws from the 1960s and 1970s
—  Equal Credit Opportunity Act of 1974 Credit score distribution varies by race
— Truth in Lending Act of 1968 Hispanic
— Fair Housing Act of 1968
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Source from the presentation of Jiahao Chen at NeurIPS 2020 the Federal Reserve System (US), 2016.
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Fairness in Finance

mw About Issues Our work News Take action Shop
« ML in Finance does need Fairness! NEWS & COMMENTARY -

How Artificial Intelligence Can
Deepen Racial and Economic
Inequities

The Biden administration must prioritize and address all

the ways that Al and technology can exacerbate racial

= &_ MARKETS BUSINESS INVESTING THECM POUITICS CNBCTV INVESTING CLUS & PRO & and other inequities.

TROM

A.l has a discrimination problem. In

banking, the consequences can be
severe @OpenAl Researchv  Productv Developersv  Safety Company v

3 Syem beene . Mo rasia Sguion fvine We've created GPT-4, the latest milestone in OpenAT’s effort in scaling up
deep learning. GPT-4 is a large multimodal model (accepting image and text

inputs, emitting text outputs) that, while less capable than humans in many
KEY * When 2 comes 19 banking and Ananci services, B protlem of arficial real-world scenarios, exhibits human-level performance on various
POINTS iaaliguace ampitying eeisting uman biases can b severs . . . :
professional and academic benchmarks. For example, it passes a simulated bar
* Deloitie notes that Al systoms o ultimately only a5 9000 34 the Gata theyre ghvos exam with a score around the top 10% of test takers; in contrast, GPT-3.5’s
ICOMPITS Of LINOPIOLENRIIVE SIASs COuld bmit ATC GORCTTY, WMo biaiars

score was around the bottom 10%. \WEREERUSNEPNIais

BerslODMSNT 16T TNAT Wain Such SyS1ems COUD Pévpetuate that Cycio of buas.
oG advnces I hesthcars e
* Landing is & prime example of where the ritk of an Al system being biased aganst Miping patests st Mays Clic wao tace.

MrGInakzed COmMMURItes Can fear s head, according 10 farmer Twittor executive LEARN MO > as well as ChatGPT, resulting in our best-ever results (though far from

Rumman Crowdhury

NOEVOVENESRIA QIR using lessons from our adversarial testing program

perfect) on factuality, steerability, and refusing to go outside of guardrails.
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Bias Life-cycle in Machine Learning

* Inherent bias presented in society
— Reinforced life-cycle: data — model — prediction
— Aloan example:
» Elder with higher credit score --> higher approve ratio by model
« Higher approve ratio by model --> more loan for elder
* More loan for elder --> higher credit score

r Biased Model 1

Biased Training Biased Decisions
Data (Actuator)
‘ Biased Telemetry l '
(Sensor)
Feedback loop

Image from Medium: link
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https://ckaestne.medium.com/fairness-in-machine-learning-and-ml-enabled-products-8ee05ed8ffc4

Fairness in Machine Learning

« Goal: Develop ML/Al systems End-User | Gender/Race/Age |
making decisions with fair treatment | 4 w0 e
— Data: human bias leading to biased contain social bias I\f outcomes depend

group? ” features?”

training data

— Model: ML model even amplify bias
during training

— End-User: Evaluate outcome bias based
on protected attributes

I Tabular | intraining data? ”
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Machine Learning Development Pipeline

F eedback, ' Task
Definition

Loop

Key points for dataset construction

* Bias source: features, label, sample
selection

* How to identify data bias?

Deployment
Process

Key points for evaluation

* Which fairness metric?

* Same test and deployment
environment or not?

* Multiple perspectives trade-oft:
performance, fairness, efficiency

Model

Testing

Process Definition

Training

Process Key points for training

* Bias source: model structure, objective
function
* How to mitigate model bias?
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Summary

« Fairness is a non-trivial sociotechnical challenge
— Many types of fairness related to a broad culture context
— Many fairness definitions
— Depends on your task definition or collected data

* No free lunch
— Can't simultaneously satisfy all fairness metrics
— Fairness v.s. performance
« Bias source
— Biased training data due to data selection process
— Biased model due to model structure or training objective
— Achieving fairness via breaking data — model — prediction life-cycle
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Measurements of Fairness

* Group Fairness
— The difference in model predictions among different sensitive groups

* Individual Fairness
— The difference in model predictions among similar individuals in different sensitive groups
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Measurements of Fairness: Group Fairness

« Fairness through Unawareness (FTU)
— The difference in model predictions between using or not using sensitive attributes

P(g[x,2) =P(7]x)

— Example: Loan Approval Process
* Aloan approval model should make a similar decision with and without sensitive attributes

@ ®
With Gender w w
FTU=75%-75%

L | _
el B 3K Ix T
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Measurements of Fairness: Group Fairness

« Demographic Parity (DP)

— The difference in positive rates between different sensitive groups
P=1lz=a)=P@=1[2=0)

— Example: Loan Approval Process
+ The difference in the approved applicants from different sensitive groups should be similar

[ 4 [ 4
Male Applicants w w
DP = 75% - 50%

ﬁ ﬁ
= o)
[ 4 [ 4 [ [ 4 25%
Female Applicants w ﬂ w w
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Measurements of Fairness: Group Fairness

« Equal Opportunity (EO)

— The difference in true positive rates between different sensitive groups
Pg=1|ly=1,z2=a)=Py=1|y=1,2=0)

— Example: Mortgage Lending Process
* A decision model should approve the similar TPR for eligible majority and minority applicants

@ @
Eligible
Male Applicants
EO = TPRMaIe - TPRFemaIe

= 50% - 50%
®
Eligible
Female Applicants

# b
R
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Measurements of Fairness: Individual Fairness

M(x)
« Fairness through Awareness ey

b,y
— The difference in model predictions between similar individuals X' e N
\2 M(_x')

D(M (x), M (x)) < d(x,x)

— Example: Credit Scoring Model
* A credit scoring model should similarly predict two similar clients

Similar Clients w w
Financial Behavior: good Financial Behavior: good
Income Level: high Income Level: high
Credit History: stable Credit History: stable
Living Area: CA Living Area: SF

Credit Level: High Hight
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Measurements of Fairness: Individual Fairness

« Counterfactual Fairness
— The difference in model predictions between an individual and its counterfactual one

P (J{zca) = | x,2=2] =P [Juep) =c|x,2 = a]

— Example: Credit Scoring Model
* A credit scoring model should similarly predict a client and its counterfactual one

Counterfactual
Real Client Client
o o
Financial Behavior: good Financial Behavior: good
Income Level: high Income Level: high
Credit History: stable Credit History: stable
Living Area: CA Living Area: SF
Credit Level: High Hight
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Mitigation Methods

« Three Categories Based on Machine Learning Life-Cycle
— Pre-processing: debias and increase the quality of training data
— In-processing: design regularization terms to objective function for learning fair models
— Post-processing: adjust the outcomes of machine learning models for certain fairness criteria

Data
Labeling

DNN Training —
=> I::} Model predict
[ with Regularizations ] [ cdel prediction

S R — — — —
~—— g g

Pre-processing In-processing Post-processing
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Mitigation Methods: Pre-Processing

« Sampling: upsample minority groups / downsample majority groups

« Data Augmentation: generate synthetic data

— Example: Co-reference
* Generate the gender-swapping counterfactual sentences to the training data

/——_—\
The secretary:called|the physician|and told[him|about a new patient.

The secretary ‘called|the physician|and told'her.about a new patient.

- |
______
---------
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Mitigation Methods: In-Processing

* Model Constraint
— Design regularization terms to objective functions based on fairness measurements

L(D;0) + A[|6]|5 + nR(D; 6)

— Example
« Absolute Correlation['l: minimize the absolute correlation between Z and Y
* Prejudice Index: minimize the mutual information between Z and Y
« Wasserstein fairl®l: minimize the Wasserstein distance between Z and Y

Z: Sensitive attributes
Y: Model outcomes

[1] Alex Beutel, Jilin Chen, Tulsee Doshi, et al., “Putting Fairness Principles into Practice: Challenges, Metrics, and Improvements.” AAAI 2019
[2] Toshihiro Kamishima, Shotaro Akaho, Jun Sakuma, “Fairness-aware Learning through Regularization Approach.” IEEE 2011
[3] Ray Jiang, Aldo Pacchiano, Tom Stepleton, Heinrich Jiang, Silvia Chiappa, “Wasserstein Fair Classification.” ICML 2020
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Mitigation Methods: In-Processing

« Adversarial Learningll
— A predictor and an adversarial classifier are learned simultaneously
— The predictor is trained to accomplish the main task (to predict Y)
— The adversarial classifier is to predict the sensitive attribute Z

Negative 1 (h (x))
Ve i g
gradient ﬂ > Predict sensitive attribute z

b | I > ek (<))

Predict label y

(LT TTTTT]

Z: Sensitive attributes
Y: Model outcomes

=

h (x)

[4] Brian Hu Zhang, Blake Lemoine, Margaret Mitchell, “Mitigating Unwanted Biases with Adversarial Learning.” AAAI 2018
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Mitigation Methods: Post-Processing

« Different Thresholds for Each Sensitive Group/®!
— For different fairness measurements, assign a distinctive threshold for each group

TPR
A

Two thresholds for Equal Opportunity

1.0

0.8

0.6 Two thresholds for Equal Odds
0.4

0.2

b
0 0.2 04 0.6 0.8 1.0FPR

ROC curves of two groups (== ,==)

[5] Moritz Hardt, Eric Price, Nathan Srebro, “Equality of Opportunity in Supervised Learning.” NeurIPS 2016
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Showcases

Goal: Develop ML/AI systems that
making decisions with fair treatment

Metrics: Evaluate outcome bias
based on protected attributes

Data: human bias leading to
biased training data

Model: ML model even amplify
bias during training

Fairness in ML

e D

Metrics Data Model
3 Research ! 3 Research : : Research !
1 Topicl | 1 Topic2 11 Topic3 |
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Research Topic 1: Generalized Fairness Metrics

« Existing group fairness metrics are either inapplicable for continuous sensitive
attribute or without tractable computation.

Gender Income

Male 50k

Female 45k

| Aggregation

=B+ =+ =B
=3 =3+ =B
=3+ =3+ =D
=B+ =+ B

In

50% 46.2k

Observation: Data aggregation transforms binary sensitive attribute into continuous attributes
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GDP Overview

«  Demographic parity (DP)®!: binary sensitive attribute
 Difference w.r.t. DP (DDP)/l: categorical sensitive attribute

* Generalized DP (GDP): general version for binary/categorical/continuous sensitive attribute
— local/global difference
— Local average: average prediction given specific sensitive attribute

1.0 1
1.0 . 1.0 . .
== = Global avg ; == = Global avg AGDP TV(/\/ - =)
08{ W e M/Favg || os8{ mene B/A/W/H avg .| 08 . .
5 |. ¢ : : 2
206 .| 2061 ’ » < | 206
T 0.4 T 0.4 ¢ © 0.41
8 H 3 .| 8
= = =
0.2 + 021 & . . 0.2{ === | ocal avg
jADP = TVE®)=TV(a®, - =) © ADP=TV(HOR®. - -) — = Global avg
0.0 0.04 . 0.0
Male Female Black Asian White Hispanic 0.0 0.2 0.4 06 08 1.0
Gender Race Male ratio

[6] Feldman, Michael, et al. "Certifying and removing disparate impact." proceedings of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining. 2015.
[7] Cho, Jaecwoong, et al. "A fair classifier using kernel density estimation." Advances in Neural Information Processing Systems 33 (2020): 15088-15099.
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GDP Justifications

« GDP is a natural extension of DP/DDP for continuous attribute
— GDP and DP are equivalent except the dataset-dependent coefficient for binary attribute.
— GDP is weighted DDP for categorical attribute.

« GDP understanding from a probabilistic view
— ldea case: prediction L sensitive attribute
+ Joint distribution = Product marginal distribution
— GDP is a necessary condition for independency
+ GDP < TV distance(joint, product margin)

« GDP regularizer v.s. adversarial debiasing
— Adversarial debiasing leads to lower GDP

Lo [TT] (X)), ) > AGDP.

Adversary: Predict sensitive attribute based on NN outputs
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Histogram estimation

GDP Estimations

— Hard group: consecutive, non-overlapping intervals
— Internal group average as local average
— Estimation error v.s #samples: Erry = O(N 3)

Kernel estimation

2

— Soft group: closer attribute pair, higher weight
— Normalized weighted average (Nadaraya—WatsoP kernel estimator)
— Estimation error v.s #samples: Errirne;r = O(N ™ 5)

1.0 1
08 ""'"!.':..'-'-A'\GDP - TV(/\/ a _a)
c "e'o. ° g8
) < .
506 )ﬁ-}'-;
2 ‘
(9]
a
o 0.4
©
(=]
=
0.2{ === | ocal avg
== = Global avg
0.0
0.0 0.2 0.4 0.6 0.8 1.0

Male ratio

[ﬁzh(s) =

N . Spn—S
Zn=1 ynK( 2
N _

Zn:l K(%)

~ h .
,] [mavg =

2

N A

n=1 yn

N

]

AGDP(h) = /0 1 ‘fnh(s) — il

ps(s)ds.
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Research Topic 2: Understanding Graph Data Bias

« Understanding the bias in graph neural networks (GNNSs)
— GNNs demonstrate empirical higher prediction bias than peer multilayer perception (MLP)®! but
without theoretical understanding.
— Bias representation after propagation for bias structure even with unbiased attributesll.
— When and Why aggregation enhance the bias?

Attribute dimension 1

Attribute dimension |

Lo s

— -4

-2 0 2 -2 0 2
Attribute dimension 0 Attribute dimension 0

(a) Biased attributes (b) Unbiased structure (c) After propagation

+ Male Female + Male Female

Attribute dimension |
Attribute dimensic

+ %5 S
R - ) ¥
e . Py
N SRR At . < *
SETRENE, . 2
! b e E -1 0 1
- T Attribute dimension 0

(d) Unbiased attributes (e) Biased structure (f) After propagation

5 0 2
Attribute dimension 0

[8] Dai, Enyan, et al. ” Say no to the discrimination: Learning fair graph neural networks with limited sensitive attribute information.“ WSDM, 2021.
[9] Dong, Yushun, et al. “Edits: Modeling and mitigating data bias for graph neural networks.” WWW, 2022.
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Why Aggregations Suffers?

Intuition Q—‘ H

- Graph topology with high sensitive fnter fink Intra link

homophily coefficient . . #Intralinks
Sensitive Homophily = ————
— Definition: #sensitive homo links / # links # all links
— E.g., 95.30% for Pokec-n dataset
— Higher than label homophily coefficient

« Graph concentration (over-smoothing) GNNs K
— More similar representation within
demographic group

— Conditionally happens: no bias for fully
over-smoothing

)
o0
\—I

lo ‘\
\

A 4

How can we theoretically understand such GNNs behavior?
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A Pilot Theoretical Study

Goal: find a sufficient condition of bias enhancement after aggregation

« Synthetic graph data: contexture stochastic block model
— Topology with intra/inter-connect probability
— Features with Gaussian Mixture Model

« GCN-like Aggregation
« Bias difference before/after aggregation

When bias enhancement happens
« large sensitive homophily coefficient & node number & connection density
« Balanced demographic size

Topology matters in fair graph learning!
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Fair Graph Rewiring

Preprocessing: rewire graph topology to achieve graph fairness
« Large label homophily coefficient

« Low sensitive homophily coefficient

« Low topology perturbation

; [HesDodll, | [[HoyHedl] r-m----
L(A|S, Y, A) — ”A” 1] al ||A|| 1 n B:I_”fl___ :4_”_:
i § |
Sensitive Homophily Label Homophily Topology Perturbation
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Research Topic 3: Fair Message Passing

« Aggregation operations in GNNs amply bias compared with peer MLP

— How can we design fair message passing in GNNs?

Input Prediction Propagation Debiasing

____________

‘ - Male Perturbation —> Female Perturbation ‘

e Female
Male

mm"
,':'a?

0.8

Prob 1
o o

Jacobian

Transformation g ©2

& Female Mean
Male Mean

0.4 0.6
Prob 0
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Empirical Observations

« Aggregations in GNNs amplify bias compared with MLP.

— GNNSs > MLP in terms of prediction bias('®

— Representation bias after propagation even with unbiased inputl11l

Table 2: Results of models w/ and w/o utilizing graph.

| Dataset | Metrics | MLP [ MLP-e [GCN [ GAT |

ACC(%) | 653+0.5 [ 68.6+0.3 | 70.20.1 | 70.4 0.1

Pokecy | AUC (%) | 713+0.3 | 748+0.3 | 77.2 0.1 | 76.7 +0.1
Asp (%) |38+13 |[69+1.0 [99£11 | 9109
Apo (%) | 22407 | 40£15 | 91406 | 8406
ACC (%) | 63.1+0.4 | 663+0.6 | 705+0.2 | 703 £0.1

Pokeen | AUC (%) | 68.22£0.3 | 724+0.6 | 75102 | 75102
Asp(%) [[33£0.6 | 8710 |96+09 | 9407
Apo (%) ||.7.1 0.9 9.9 £0.6 128 +1.3 | 12.0 +1.5

Attribute dimension |

Lo

— 4

2 0 2
Attribute dimension 0

(a) Biased attributes

Attribute dimension

+  Male Female

2 0 2
Attribute dimension 0

(d) Unbiased attributes

(e) Biased structure

+  Male Female

Attribute dimension |

- 0 2 4

Attribute dimension 0

(c) After propagation

+  Male Female

-1 0 1
Attribute dimension 0

(f) After propagation

[10] Dai, Enyan, et al. ” Say no to the discrimination: Learning fair graph neural networks with limited sensitive attribute information.“ WSDM, 2021.
[11] Dong, Yushun, et al. “Edits: Modeling and mitigating data bias for graph neural networks.” WWW, 2022.
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A Unified Optimization Framework

GNNs are graph signal denoising!?!

. 2 =
argmin L(F) := ||F — Xj,||% + R(F,L) R(F,L) = A tr(FTLF) = A [ 3
F / / o %65 \/d +1 \/d +
Close to the input Smoothness prior | Define Prior == Optimization Solver == Message Passing
“Noisy Signal” Graph “Clean Signal” -
v * GCN Xou = AXiy
vy g EEEEE
% i i -
vs mmamm « PPNP Xow=a(I-(1-a)A) Xy
Vs EEEEN
vz 1 3
g v F * APPNP/GCNII XF = (1 - )AXW + oXiy

“Nodes are similar to their neighbors”

[12] Ma, Yao, et al. “A unified view on graph neural networks as graph signal denoising.” CIKM 2021
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Fair Message Passing

Define Prior ==) Optimization Solver ==) Message Passing

* Objective design

As ~ 1 : :
mFi‘n ?tr(FTLF) + §||F — Xirans||F + Al AsSE(F)||1 |— Fairness prior

~"

hs (F)
» Optimization solver

hy(ASFF))

— Avoid L1 norm objective via Fenchel conjugate min max hs(F) + (p,u) — h}(u)

— Proximal Alternating Predictor-Corrector Solver!'3]

« Fair Message passing
( Xk+1 - 'VXtrans + (1 - V)AFka

agg I
Bk+l _ wk+l . 9(pu
F*" = Xigg =7~ oF P’

! G = uF 4 BASF(FRFL),

k+1

u*t! = min (|ﬁk+1|, )\f> - sign(uFtl),

k41 _ k41 o 0(p,uftt)
| B =Xagg — 7o

Fk

Step @
Step &

Step ©
Step @

Step ®

u

—> Aggregation with skip connection

— |_earn and reshape perturbation vector u

[13] Ignace Loris, et al. On a generalization of the iterative soft-thresholding algorithm for the case of non-separable penalty. Inverse Problems, 27(12):125007,

2011,
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Fair Message Passing

*  FMP Interpretation
— Three stages in FMP

— Four steps in Debiasing i ‘O° ;iXorq' Xm,gs: \\€ ixagg : \: :
o” o s ¥l b =

Input Prediction Propagation Debiasing

____________

o | : |
 Efficiency =
_ Negl|g|b|e additional Computa’[ion ’ Male Perturbation —> Female Perturbation‘
’ e Female m'o & Female Mean
- White-box sensitive attribute usage | E*P : N
. Woey ?;‘_{" B '&q Jacoblan' . ‘—\;“_ |
— Explicit usage in FMP - \':"f?ﬁ J& w Y
— Implicit encoding in parameters for far |~~~ "~ " " - T et T
training
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Challenges, Insights, and Tools

« Challenges and Insights

— Define target fairness for your own task
* Group fairness, individual fairness or counterfactual fairness?
* Fairness metric definition
+ Compositional fairness (multiple sensitive attributes)

— Fairness achievement
« Data: feature masking, sample selection, data distillation, et al.
* Model: regularization, adversarial debiasing, reweighting, et al.
* Prediction: threshold adjustment, calibration

— Fairness with transparency
+ Bias detection via model interpretation
* Interpretate fairness algorithms
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Challenges, Insights, and Tools

 Tools
— Google What-if
— IBM Fairness 360
— Microsoft Fairlearn
— DATA Lab FFB

. alFaimess 360 — Falrlearn
g 7.; g B & i 4
E.Hd i

F EB Fair Fairness Benchmark
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A Hands-On Example of Fairness in Finance

 Fairness Issue in Finance Tasks
— Income Prediction
— Credit Risk Prediction

A Hands-On Example of Fairness in Finance
— Our Proposed Framework: Fair Fairness Benchmark (FFB)
— A Live Demo
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Fairness Issues in Financial Tasks

Scorecard Risk Levels

Low Risk Medium Risk High Risk

* |ncome Prediction

— Dataset: Adult[1] : : E - £3,000
— Sensitive attribute: Gender Y 650-700 B~ ;¢ e
Fair % § B
« Credit Risk Prediction
= INCOME
* And more... PREDICTION

[1] http://archive.ics.uci.edu/dataset/2/adult
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Financial Task: Income Prediction

* |ncome Prediction

— Task: Predict whether an individual will earn more or less than $50,000 per year..
— Dataset: Adult [1]
— Sensitive attribute: Gender

— Target: develop a model that accurately predicts the income while ensuring fairnes{ Prediction

Age Workclass W:ii;:tl Education Education(r;lfu;r‘;l;:; Marital-status Occupation Relationship Race Gender Cap;t:ill; Capilzasl; Hours‘-:eeerlz c':mﬁ; Income
0 39 State-gov 77516  Bachelors 13 Never-married Adm-clerical Not-in-family White Male 2174 0 40 Ugtita?g; <=50K
1 50 se'f'emp'”i‘;t; 83311 Bachelors 13 Mam‘“;g;ﬂ:‘; manaz:‘:gl Husband White  Male 0 0 13 Ugt't;gs <=50K
2 38 Private 215646  HS-grad 9 Divorced Handlers” Not-in-family White  Male 0 0 40 Upited | =50k
3 53 Private 234721 11th 7 Ma’”’ig;‘j;’é HandlerS”  Husband Black  Male 0 0 40 vnited | =50k
4 28 Private 338409 Bachelors 13 Ma"i‘“;g;i‘;’é Prof-specialty Wife Black Female 0 0 40 Cuba|| <=50K

[1] http://archive.ics.uci.edu/dataset/2/adult
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Introducing Fair Fairness Benchmark (FFB)

« The Fair Fairness Benchmark (FFB) is
* A Pytorch-based framework

* A set of fair machine learning models F F B
air

« Comprehensive fairness evaluation metric

* This benchmark aims to be
* Minimalistic
 Hackable
* Beginner-friendly

» Reference implementation for researchers

[1] FFB: A Fair Fairness Benchmark for In-Processing Group Fairness Methods, Xiaotian Han, Jianfeng Chi, Yu Chen, Qifan Wang, Han Zhao, Na Zou, Xia Hu
[2] https://github.com/ahxt/fair fairness benchmark
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A Case Study = on Income Prediction
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